
 

1 

 

SRM Institute of Science and Technology 

College of Engineering and Technology 

 
Electronics and Communication Engineering 

 
  

MINI PROJECT REPORT 

 

ODD Semester: 2024-2025 

 

 

Lab code & Sub Name : 21CSS201T & Computer Organization and Architecture  

 

Year & Semester  :  II & III   

 

Project Title :  Performance analysis of booth alternate, bit pair recoding, booth, shift add                                                                

multiplier for 8-bit input 

 

  

 

Team Members:         1.  A. Avinash Sastry (RA2311004010007) 

                                    2. Emmanuel Joe (RA2311004010014) 

                                    3. Adithya (RA23110040100016) 

                                    4. Ashwin  Krishnan (RA2311004010017) 

                                       

 

 

Date   : 

 

Staff Name   :   
 

Signature             : 

 

 

 

 

Particulars 
 

Max. 

Marks 

Marks 

Obtained 

Name: A. Avinash Sastry 

Register No: RA2311004010007 

Review 1 and 2 05  

Demo verification 

&viva 

 

03 

 

Project Report 02  

Total 10  



 

2 

 

 

 

 

 

Performance analysis of booth alternate, bit pair recoding, booth, shift add multiplier 

for 8-bit input 

 

 

 

OBJECTIVE: 

            

The objective of this code is to multiply two 8 bit-binary numbers and verifying the result, 

and also comparing the various performance standards (like device utilization summary, 

time taken, cell usage and many more) and finding out which was the ideal multiplier. 

 

ABSTRACT: 

                           

Scientific calculators and computers took the world by storm during the late 1970s and 

1990s, and a big part as to how these devices helped human life was reducing time taken for 

doing tedious tasks and performing simple arithmetic and logical operations. Multiplying 

two numbers is basic mathematics taught to primary school students, but multiplying large 

numbers like 3 digit or even 4-digit numbers is tedious and time consuming, which is we 

calculators and computers were created to perform these tasks for us. Through this project, 

we will be showing how a computer multiplies these two numbers by accepting these 

numbers in binary format, the various methods it uses and which is the most suitable method 

of them all. 

 

INTRODUCTION: 

 

The project, Performance Analysis of Booth multiplier, Booth Alternate multiplier, Bit Pair 

Recoding multiplier and Shift-Add Multipliers for 8-bit Inputs, focuses on evaluating the 

efficiency of various multiplication algorithms for digital circuits[1]. Multiplication is a 

fundamental operation in many computing tasks, and efficient multiplier designs are crucial 

for improving the performance of processors, especially in areas like signal processing and 

embedded systems [2,3]. In this project, four different multiplication techniques are 

analyzed: 

 Booth Algorithm 

 Bit-pair Recoding Algorithm 

 Shift Add multiplier 

 Booth Alternate multiplier 

 

 

HARDWARE/SOFTWARE REQUIREMENTS: 

 

 Programming languages used: Verilog 

 Software used: QuestaSim 

 

 

 

 



 

3 

 

 

CONCEPTS/WORKING PRINCIPLE 

 

 

Fig 1. flowchart representing the working of shift add multiplier 

The given figure explains how shift add multiplication works for n bit numbers[2-3]From 

initialization of the multiplier and multiplicand to the various intermediate steps involved 

while performing this multiplier.  

 

Fig 2.  flowchart representing the working of booth multiplier 

The given flowchart shows a step-by-step explanation of how the booth multiplier would 

work for an 8-bit number, as in the first decision making step, we can see the statement “i<8? 

”[1-3]. The rest of the flowchart shows the various intermediate steps involved while 

performing booth multiplier. 



 

4 

 

 

 

Fig 3. flowchart representing the working of booth alternate multiplier 

The given flowchart shows a step-by-step explanation of how the booth alternate multiplier 

would work for an 8-bit number. It can noticed that in booth alternate multiplier there are 

more data entries to be provided than decision making steps which would in theory result in 

longer compilation and execution time. 

 

 

Fig 4. flowchart representing the working of shift add multiplier 

The given flowchart shows a step-by-step explanation of how the bit pair recoding multiplier 

would work for an 8-bit number, as in the first instruction box it can be seen the command 

stating “Sign extend A to 9 bits”. This line means that on top of the 8-bit number being 

inputted it must extend the number to 9 bits for ease calculation and grouping of numbers 

into 3 bits.[1-3] 



 

5 

 

 

APPROACH/METHODOLOGY/PROGRAMS:             

 

1) Shift Add Multiplier Code: 

module shiftadd(  

  input [7:0] multiplicand,   // 8-bit multiplicand 

    input [7:0] multiplier,     // 8-bit multiplier 

    output [15:0] product       // 16-bit product 

  ); 

 

 

    wire [15:0] partial_products [7:0]; // Array to store partial products 

    wire [15:0] shifted_products [7:0]; // Array to store shifted products 

    wire [15:0] sum [6:0];              // Array to store intermediate sums 

 

    // Generate partial products 

    genvar i; 

    generate 

        for (i = 0; i < 8; i = i + 1) begin : gen_partial_products 

            assign partial_products[i] = multiplier[i] ? {8'b0, multiplicand} : 16'b0; 

        end 

    endgenerate 

 

    // Generate shifted partial products 

    generate 

        for (i = 0; i < 8; i = i + 1) begin : gen_shifted_products 

            assign shifted_products[i] = partial_products[i] << i; 

        end 

    endgenerate 

 

    // Sum the shifted partial products 

    assign sum[0] = shifted_products[0] + shifted_products[1]; 

    assign sum[1] = sum[0] + shifted_products[2]; 

    assign sum[2] = sum[1] + shifted_products[3]; 

    assign sum[3] = sum[2] + shifted_products[4]; 

    assign sum[4] = sum[3] + shifted_products[5]; 

    assign sum[5] = sum[4] + shifted_products[6]; 

    assign sum[6] = sum[5] + shifted_products[7]; 

 

    // Assign the final product 

    assign product = sum[6]; 

 

endmodule 

 

2) Booth Algorithm Verilog Code: 

 

module booth_multiplier(op, multiplicand, multiplier); 

    output [15:0] op; 

    input [7:0] multiplicand, multiplier; 



 

6 

 

 

    reg [7:0] A, M, Q; 

    reg Q_1; 

    integer i; 

 

    always @(*) begin 

        // Initialize variables 

        A = 8'b0; 

        M = multiplicand; 

        Q = multiplier; 

        Q_1 = 1'b0; 

 

        // Perform Booth's algorithm for all 8 bits 

        for (i = 0; i < 8; i = i + 1) begin 

            case ({Q[0], Q_1}) 

                2'b01: A = A + M;  // Add multiplicand 

                2'b10: A = A - M;  // Subtract multiplicand 

            endcase 

            // Arithmetic right shift 

            {A, Q, Q_1} = {A[7], A, Q}; 

        end 

    end 

 

    assign op = {A, Q}; 

endmodule 

 

3) Booth Alternate Multiplier Verilog Code: 

 

module booth_alternate_multiplier ( 

    input [7:0] A, // Multiplier 

    input [7:0] B, // Multiplicand 

    output reg [15:0] Product // 16-bit Product 

); 

 

    reg [15:0] Acc; // Accumulator 

    reg [7:0] NegB; // Negative of multiplicand (-B) 

    reg [8:0] Booth; // Booth register (9 bits for A and extra bit for Booth encoding) 

    integer i; 

 

    // Booth's algorithm for alternate multiplier 

    always @(*) begin 

        // Initialize Booth register with multiplier A and extra bit (0 at the LSB) 

        Booth = {A, 1'b0}; 

        // Initialize accumulator (product) to 0 

        Acc = 16'd0; 

        // Calculate negative of B (for subtraction when needed) 

        NegB = -B; 

 

        // Perform Booth's algorithm 

        for (i = 0; i < 8; i = i + 1) begin 



 

7 

 

            // Check the last two bits of Booth register (Booth[i] and Booth[i-1]) 

            case (Booth[1:0]) 

                2'b01: begin 

                    // Add multiplicand B shifted to the correct position (i-th position) 

                    Acc = Acc + (B << i); 

                end 

                2'b10: begin 

                    // Subtract multiplicand B shifted to the correct position (i-th position) 

                    Acc = Acc + (NegB << i); 

                end 

                default: begin 

                    // No operation needed for 00 or 11 

                end 

            endcase 

             

            // Perform arithmetic right shift on Booth register 

            Booth = {Booth[8], Booth[8:1]}; // Shift with sign extension 

        end 

 

        // Assign final product to output 

        Product = Acc; 

    end 

 

endmodule 

 

 

4) Bit Pair Recoding Multiplier Verilog Code 

 

module bit_pair_recoding_multiplier( 

    input [7:0] A, // Multiplier 

    input [7:0] B, // Multiplicand 

    output reg [15:0] Product // 16-bit Product 

); 

 

    reg signed [8:0] tempA; // Signed extended A (9-bit) 

    reg signed [15:0] tempProduct; // Temp product to accumulate partial sums 

    integer i; 

 

    always @(*) begin 

        tempA = {A[7], A}; // Sign extend the multiplier A to 9 bits 

        tempProduct = 16'd0; // Initialize product to zero 

         

        // Perform bit pair recoding and Booth's algorithm 

        for (i = 0; i < 8; i = i + 2) begin 

            case ({tempA[i+2], tempA[i+1], tempA[i]}) // Select bit pairs 

                3'b000, 3'b111: begin 

                    // No addition required for 0 (000) and -0 (111) 

                end 

                3'b001, 3'b010: begin 

                    tempProduct = tempProduct + (B << i); // Add B shifted left by i positions 



 

8 

 

                end 

                3'b011: begin 

                    tempProduct = tempProduct + ((B << i) << 1); // Add 2B shifted left by i 

positions 

                end 

                3'b100: begin 

                    tempProduct = tempProduct - ((B << i) << 1); // Subtract 2B shifted left by i 

positions 

                end 

                3'b101, 3'b110: begin 

                    tempProduct = tempProduct - (B << i); // Subtract B shifted left by i positions 

                end 

            endcase 

        end 

         

        Product = tempProduct; // Assign final product 

    end 

 

endmodule 

 

 

 

 

OUTPUT: 

The outputs of the programs are given below: 

 

 
Fig 5. shows the output of shift add multiplier 

 

Consider the multiplicand(A) = 11101011(235 in decimal) and multiplier = 10000011(131 

in decimal) and it can be seen the output achieved as 0111100001000001(30,785 in decimal 

which is the required output in 16 bits(8+8)[1].The other three outputs are the partial 

products, shifted products and intermediate sum. These three outputs are the intermediate 

steps that take place before it can get the product of the two numbers. 

 

 

 



 

9 

 

 
 

Fig6 shows the device utilization summary of the shift add multiplier 

 

The number of slices utilized are 3%. A slice is a collection of logic elements showing the 

amount of available logic resources used. This means that only 3%(34 out of a total of 960) 

of the total available logic slides on the FPGA device are being used. LUTs utilization is 

also 3% and this means that only 3% of the look up tables are used for combinational logic 

and this is good as the lower the LUTs, the less complex the circuit is. IOBs are Input/Output 

Blocks used to interface with external devices[1-4]. 

 

Total Compute time:34.460ns (25.001ns logic, 9.459ns route) 

CPU: 1.49 / 1.65 s | Elapsed: 1.00 / 1.00 s 

 

 

 

 

 
Fig7 shows the output of booth multiplier 

 

Consider the multiplicand(A) = 10101100(-84 in decimal) and multiplier = 01111011(123 

in decimal) and it can be seen that the output achieved as 1101011110100100       (-10332 

in decimal which is the required output in 16 bits(8+8)[1].The other three outputs are the 

partial products, shifted products and intermediate sum. These three outputs are the 

intermediate steps that take place before it can get the product of the two numbers. 

 

 

 

 

 

 

 



 

10 

 

 
Fig8 shows the device utilization summary of the booth multiplier 

 

The number of slices utilized are 7%. A slice is a collection of logic elements showing the 

amount of available logic resources used. This means that only 7%(71 out of a total of 960) 

of the total available logic slides on the FPGA device are being used. LUTs utilization is 6% 

and this means that only 6% of the look up tables are used for combinational logic and this 

is good as the lower the LUTs, the less complex the circuit is. IOBs are Input/Output Blocks 

used to interface with external devices[1-4]. 

 

 

 

Total Compute Time: 49.329ns (31.233ns logic, 18.096ns route) 

CPU: 1.90 / 2.13 s | Elapsed: 1.00 / 2.00 s 

 

 

  
 

Fig 9. shows the device utilization summary of the booth alternate multiplier 

 

Consider the multiplicand(A) = 11110001(-15 in decimal) and multiplier = 10110111  (-73 

in decimal) and it can be seen that the output achieved as 0000010001000111 (1095 in 

decimal which is the required output in 16 bits(8+8)[1].The other three outputs are the partial 

products, shifted products and intermediate sum. These three outputs are the intermediate 

steps that take place before it can get the product of the two numbers. 

 

 

 

 



 

11 

 

 
 

Fig 10. shows the device utilization summary of the booth alternate multiplier 

 

The number of slices utilized are 3%. A slice is a collection of logic elements showing the 

amount of available logic resources used. This means that only 14%(138 out of a total of 

960) of the total available logic slides on the FPGA device are being used. LUTs utilization 

is 11% and this means that only 11% of the look up tables are used for combinational logic 

and this is good as the lower the LUTs, the less complex the circuit is. IOBs are Input/Output 

Blocks used to interface with external devices[1-4]. 

 

 

Total Compute time: 51.674ns (31.714ns logic, 19.960ns route) 

CPU: 2.15 / 2.35 s | Elapsed: 3.00 / 3.00 s 

 

 

 

 

 

 
 

Fig 11. shows the output of bit pair recoding multiplier 

 

 

Consider the multiplicand(A) = 11110011(-13 in decimal) and multiplier = 01011101 (93 in 

decimal) and can see the output achieved as 1111101101000111 (1209 in decimal which is 

the required output in 16 bits(8+8)[1].The other three outputs are the partial products, shifted 

products and intermediate sum. These three outputs are the intermediate steps that take place 

before can get the product of the two numbers. 

 

 

 



 

12 

 

 
 

Fig 12. shows the device utilization summary of the shift add multiplier 

 

The number of slices utilized are 10%. A slice is a collection of logic elements showing the 

amount of available logic resources used. This means that only 10%(104 out of a total of 

960) of the total available logic slides on the FPGA device are being used. LUTs utilization 

is 8% and this means that only 8% of the look up tables are used for combinational logic and 

this is good as the lower the LUTs, the less complex the circuit is. IOBs are Input/Output 

Blocks used to interface with external devices[1-4]. 

 

Total Compute Time: 35.371ns (22.906ns logic, 12.465ns route) 

CPU: 2.69 / 2.87 s | Elapsed: 3.00 / 3.00 s 

                                      

 

RESULT: 

 

Table 1: Comparative Performance Analysis of the different multiplier algorithms 

 

Algorithm Total Compute Time CPU time Elapsed Time 

Shift Add Multiplier 34.460 ns (25.001ns logic, 

9.459 ns route) 

1.49 / 1.65s 1.00 / 1.00s 

Booth Multiplier 49.329 ns (31.233 ns logic, 

18.096 ns route) 

1.90 / 2.13s 1.00 / 2.00s 

Booth Alternate  51.674 ns (31.714 ns logic, 

19.960 ns route) 

2.15 / 2.35s 3.00 / 3.00s  

Bit-Pair Recoding 35.371 ns (22.906 ns logic, 

12.465 ns route) 

2.69 / 2.87s 3.00 / 3.00s 

 

From the table it can be seen that shift add multiplier is the fastest algorithm while booth 

alternate multiplier is the slowest algorithm. The reasoning for this can be the large route 

time taken for booth alternate multiplier to compute (almost a 10ns jump compared to shift 

add multiplier) [1]. Another fast multiplier was bit-pair recoding multiplier, its logic time 

was faster than shift add multipliers but the increased code length, i.e. the route caused it to 

be slower than shift add multiplier [1-2]. 

 

 



 

13 

 

 
 

Fig 13. Graphical representation of Table 1 

 

From the graph there is a clearer understanding of how long each multiplier took to compute. 

It also shows the comparison of the CPU rendering time and elapsed time taken. From the 

graph it is clear that both the booth multipliers are slow, but are still in use due to the ability 

to multiply signed (negative) numbers. 

 

 

CONCLUSIONS: 

 

This project provides a comprehensive performance analysis of four multipliers—Booth, 

Booth Alternate, Bit Pair Recoding, and Shift-Add—using 8-bit inputs. Each technique 

demonstrates unique advantages in terms of speed, resource utilization. Through detailed 

examination of factors such as total compute time and device utilization, the Shift-Add and 

Bit Pair Recoding multipliers emerge as faster alternatives, whereas Booth-based algorithms 

show strength in handling signed operations efficiently.  

 

In practical applications, the choice of a multiplier depends heavily on the trade-offs between 

computation speed, hardware cost, and ease of implementation. For systems requiring 

minimal logic and faster execution times, the Shift-Add and Bit Pair Recoding methods are 

preferable. However, for applications involving more complex arithmetic, such as signal 

processing, Booth’s algorithms provide reliable solutions.   

 

In conclusion, this analysis offers valuable insights into selecting an appropriate multiplier 

design based on specific performance requirements, aiding in the development of optimized 

digital circuits. 

 

 

 

 

 



 

14 

 

REFERENCES: 

[1] A. Ghalyan and V. Kadyan, “Performance Analysis and Verification of Multipliers,”  

International Journal of Computer (IJC), vol. 13, pp. 93–102, 2014. 

 

[2] R. Hussin, A.Yeon Md .Shakaff, N.Idris, Z.Sauli, Rizalafande C.Ismail, Afzan 

Kamarudin ,”An Efficient Modified Booth Multiplier Architecture”,IEEE International 

Conference on Electronics Design ,Dec. 2008.  

 

[3] P.kumar G.Parate, Prafulla S. Patil, Dr (Mrs) S. Subbaraman ,“ASIC Implementation of 

4 Bit Multipliers”,IEEE First International Conference on Emerging Trends in Engineering 

and Technology, pp. 408-413,2008.  

 

[4] S R. Vaidya, D. R. Dandekar, “Performance Comparison of Multipliers for Power-Speed 

Trade-off in VLSI Design”, Recent Advances in Networking VLSI and Signal Processing, 

pp.262-265, June 2011.  


